Activity 4 Names: ______ Answers should be filled in on this sheet except where noted.

- 1. Pick up an acrylic frame, 4 hooks, and 2 rubber bands from the front of the room.
- 2. Find an object that can be used as a mass (25 grams is about the minimum).
- 3. Measure the mass of the object and convert it to a force, W.

Object weight: W = _____

- 4. Suspend the mass from opposite sides of the frame using the two rubber bands.
- 5. Using a ruler, measure the x and y distances from one end of the rubber band to the other.

For the first rubber band:	$\delta_{x,1} =$
	$\delta_{y,1} =$
For the second rubber band:	$\delta_{x,2} =$
	δ _{y,2} =

6. Using the weight from step 3 and the measurements from step 5, calculate the force in each applied to each rubber band assuming particle equilibrium. Show your work on a separate sheet.

For the first rubber band:	Ė₁ =
For the second rubber band:	Ė₂ =

7. Measure the length of each rubber band and use it to calculate the force in each rubber band using the provided calibration.

For the first rubber band:	L ₁ =
	F ₁ =
For the second rubber band:	L ₂ =
	F ₂ =

8. Calculate the performance metric, $m = \sqrt{(F_1 - \dot{F}_1)^2 + (F_2 - \dot{F}_2)^2}/W =$

Load in Newtons: F = 0.1687*Length - 7.7431

Mass in grams: F = 17.201*Length - 789.3